TecHNIcAL RESsEaARCH REPORT

A Distributed Shared Key Generation Procedure Using
Fractional Keys

by R. Poovendran, M.S. Corson, J.S. Baras

CSHCN TR 98-19
(ISR TR 98-66)

catellite o
ot e

1 Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University
of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN

h%
)
= The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
9
&
& series originating at the University of Maryland.

l)’a".’if.‘atlnl‘l ‘AG@‘
Web site http://www.isr.umd.edu/CSHCN/

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1998 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

A Distributed Shared Key Generation Procedure Using Fractional Keys | .\ NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army Resear ch Laboratory,2800 Powder Mill Road,Adelphi,MD,20783 | REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 7
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A DISTRIBUTED SHARED KEY GENERATION
PROCEDURE USING FRACTIONAL KEYS-

R. Poovendran, M. S. Corson, J. S. Baras

Center for Satellite and Hybrid Communication Networks
Institute for System Research,
University of Maryland at College Park
College Park, MD 20742
e-mail: {radha, corson, baras}@isr.umd.edu

ABSTRACT

We present a new class of distributed key generation and
recovery algorithms suitable for group communication sys-
tems where the group membership is either static or slowly
time-varying, and must be tightly controlled. The proposed
key generation approach allows entities which may have only
partial trust in each other to jointly generate a shared key
without the aid of an external third party. The group collec-
tively generates and maintains a dynamic group parameter,
and the shared key is generated using a strong, one-way
function of this parameter. This scheme also provides per-
fect forward secrecy. The validity of key generation can be
checked using verifiable secret sharing techniques. The key
retrieval method does not require the keys to be stored in
an external retrieval center. We note that many Internet-
based applications may have these requirements. Fulfillment
of these requirements is realized through the use of fractional
keys—a distributed technique recently developed to enhance
the security of distributed systems in a mon-cryptographic
manner.

INTRODUCTION

Cryptographic key generation and management is an im-
portant problem in multicast and group communications
[1-5]. In many instances, it is desirable to generate a group
shared key (SK) for efficient intra-group communications.
However, having the same SK implies that the all the group
membership is at the same trust level. In a distributed,
multicast group, it is often not possible nor desirable to
have the same trust level throughout the group. One may
be tempted to suggest that a single trust level can be de-
fined by choosing the lowest possible trust level as the group
trust level. Though such a straightforward approach is fea-
sible, one can do better by compartmentalizing the group
based on local trust levels [5]. Such a compartmentalization
inevitably leads to clustering of a given group. Compart-
mentalization also helps in having a better control over the

Funded in part by NSA under its LUCITE Program and
the U.S. Army Research Laboratory under the Advanced
Telecommunications/Information Distribution Research Pro-
gram (ATIRP), CAN# DAAL01-96-2-0002.

set of key management and distribution functionalities as
noted in [5].

While the entities in each cluster may share a common trust
level, it may be that the clusters are mutually suspicious
and have only partial trust in each other. Thus, a mecha-
nism is desired that permits mutually suspicious parties to
come together to generate a shared key. In order to avoid
involving (and potentially paying) a third party, it is also
desirable that the scheme involve only the group members
and no external parties.

Schemes such as [2,3,4] propose to replace the traditional
(external) Key Distribution Center (KDC) with a Group
Controller (GC) which can generate and distribute the keys.
However, in these approaches, a single member is allowed
to generate the keys. This means that group members must
place complete trust in this group member. In [5], a panel
of members are allowed to generate the keys. However,
[5] does not present any explicit distributed key generation
scheme.

In this paper, we present a class of key management schemes
which increase the security of key generation and recovery
using non-cryptographic techniques. The schemes employ
distributed algorithms based on Fractional Keys (FK). The
proposed methods allow the members to automatically up-
date the keys in a periodic manner without any assistance
from an external third party, and to do so using verifiable
secret sharing techniques [7,8].

PROPERTIES OF THE NEW KEY
GENERATION SCHEME

The following notation is used to describe the different quan-
tities used in the algorithm:

«; j: The one-time pad of the ith member at the jth key
update iteration.

0;: The pad binding parameter at the jth key update
iteration.

{Ki,Ki_l}: Public key pair of the member ¢. This pair
is assumed to be updated appropriately to key the
integrity and confidentiality of any communication
transaction by and with member .

FK;;: The FK of the ith member at the jth key update
iteration.

HFK;;: The hidden FK (HFK) of the ith member at the
jth key update iteration.

SKj: The group SK at the jth key update instance.
A — B : X: Principal A sends principal B a message X.
Our message format is {{T}, M, j, Msg}Kgl}KR, where

e T;: a real-valued, wallclock time stamp nonce
generated by member .

e M: denotes the mode of operation with “I” for
Initialization mode, “G” for key Generation mode,
and “R” for key Recovery mode.

e j: integer-valued, denotes the current iteration
number.

e Msg: the message to be sent.
o Kg 1. Denotes the private key of the sender S.
e Kpg: Public key of the receiver.

In developing the new key scheme, we note that the follow-
ing properties are desirable for a multiparty key generation
scheme:

e A FK contributed by a participating member should
have the same level of security as the group SK.

e A single participating member, without valid permis-
sions, should not be able to obtain the FK of another
member.

e If a FK-generating member has physically failed, been
compromised or removed, the remaining FK-generating
members should be able to jointly recover the FK of
the failed member (this requires not majority voting
but total participation).

We note that the first property simply states that the dis-
tributed key generation scheme has to be such that each
FK space has at least the same size as the final SK space.
Hence, each member may generate FK of different size but,
when combined, they lead to a fixed length SK.

The second property has to do with the need for protection
of individual FKs that is desired due to the absence of a
centralized key generation scheme. In the current scheme,
every member perform an operation to hide its FK such
that, when all the hidden FKs (HFK) and the group pa-
rameter are combined, the net result is a new SK. We note
that even if a HFK is known, the problem of obtaining the
actual FK or the SK needs further computation. We will
describe the requirements of the FK concealment mecha-
nism in the next section.

If a contributing member physically fails, becomes compro-
mised, or has to leave the multicast group, then it becomes
necessary to replace the existing member with a new mem-
ber. Hence, the newly-elected member should be able to
securely recover the FK generated by the replaced member.
However, to ensure the integrity of the scheme, this recov-
ery should be possible only if all the remaining contributing
members cooperate. This feature deviates significantly from
the existing key generating schemes [2,3,4]. We note that
the requirement that an individual member acting alone not
be able to obtain the FKs of other contributing members is
similar to protecting individual private keys in the public
key crypto systems.

DESCRIPTION OF THE MULTIPARTY KEY
GENERATION SCHEME

The following is a list of assumptions regarding the algo-
rithm, some of which may appear rather abstract at first
glance:

e There exist a commutative operator ® which forms
an Abelian group when operating on the set of keys.

e It is computationally difficult to perform crypto anal-
ysis on a cryptographically-secure random key by search
methods if the key length is sufficiently large.

e The keys are all L bits in length, and all members
know this length.

e The number of participants in generating the SK is
fixed as n (where n may be a function of ®).

e There is a mechanism for certifying the members par-
ticipating in the key generation procedure, for se-
curely exchanging the quantities required in the al-
gorithm and for authenticating the source of these
quantities.

e Every member has the capability to generate a
cryptographically-secure random number, or a fresh
quantity, of length at least L bits.

With the assumptions above, we note that the key manage-
ment scheme consists of three major parts:

1. Initialization—consisting of member selection, and se-
cure initial pad and binding parameter generation and
distribution;

2. Key Generation—an iterative process consisting of
fractional, hidden and shared-key generation; and

3. Key Retrieval—required only in the case of a member
node failure or compromise.

INITIALIZATION ALGORITHM

A Group Initiator (GI) first selects a set of n FK-generating
members, and the GI may be one of these members (how it
occurs is not specified and is application-dependent). The
GI then either (1) contacts a Security Manager (SM)—a
third party who is not a FK-generating member—who gen-
erates the initial pads and the binding parameter and dis-
tributes them to the members, or (2) initiates a distributed
procedure among the group members to create these quan-
tities without the aid of a third party.

SECURITY MANAGER-BASED
INITIALIZATION

The initial pads and binding parameter are distributed to
each member i, fori =1,...,n, as

SM — i : {{TSM,I,I,am,Gl}K;;J}Ki

where a; 1 —its initial one-time pad—is computed such that
Q1,1 ©® @21 @ - @ ay1 = 0.

DISTRIBUTED INITIALIZATION

Figure 1. Distributed initialization algorithm

The GI (assumed to be a member and denoted here by the
index 1 shown in Figure 1) can perform the following steps
(as in [10]) (1)-(5) to generate the initial parameters of the

group:

1. Generate two uniformly-distributed random quanti-
ties v and v4,; of bit length L, operate on these two
quantities as y@vq 1 = d1, and send the result to mem-
ber 2 (the “next” member in the group) as 1 — 2:

{{11,1, 1,61}K;1}K2.
2. The following steps are repeated for ¢ = 2,...,n — 1:

(a) Member i generates a uniform random variable
v;,1 of bit length L.

(b) Member i then operates on the quantity it re-
ceived from member i —1 as ;-1 @ v;1 = §;.

(¢) Member i then sends the result to member i + 1
asi — i+ 1: {{Ti,I,].,(Si}Ki—l}KiJrl.

3. Eventually, the group member i = n receives d,_1
and then generates a uniformly-distributed random
quantity vy, 1 of bit length L, performs §,—1 @ v, 1 =
0, and then securely sends it to the initiating member
i=1lasn— 1 {{T},,[,1,6n} -1}k,

4. The initiator (member 1) then decrypts it and per-
forms v ® d,, = 61, and then sends 6; to each member
i,fort =2,...n, as
1—1: {{Tl,I,l,Gl}Kfl}Ki.

5. Each member ¢ privately computes a;1 = 61 @ v; 1,
and uses o1 as its initial pad.

We note that these two approaches of initialization—security
manager-controlled and distributed—are not equivalent un-
less additional security assumptions are made. For example,
in the case of distributed initialization within the group, we
point out that using following attack is feasible.

Agsume that members ¢ — 1 and i + 1 conspire to obtain
the secret of member ¢, where the numerical ordering cor-
responds to the order of message passing in the distributed
algorithm.

1. Member ¢ — 1 sends ;1 to member ¢ as per the algo-
rithm, and also to member i+1 without ¢’s knowledge.

2. Member ¢, who is unaware of the conspiracy between
i—1 and ¢+ 1, computes §; = d;_1 ©@v;,; and sends it
to member ¢ + 1 securely.

3. Member ¢ + 1 can now compute v;1 = d;—1 © §; and
obtain the secret v;; of member .

However, the secret v;; generated by member ¢ becomes
part of the pads (i.e. the a’s) of members ¢ — 1 and i + 1.
Hence, the knowledge of v;; reduces the entropy of the
initial pads of the conspiring members. Thus, while the
attack is feasible, there may not be any incentive to conspire
in this manner.

KEY GENERATION ALGORITHM

The key generation algorithm is an iterative process de-
picted in Figure 2. Each iteration j requires as input (in-
dicated as step (0) in the figure) a set of one-time pads
a;j, © = 1,...,n, and the binding parameter 6;, which
are obtained from the initialization algorithm for iteration
j =1, and from the preceding iterations for j > 1.

------------- @0(ij @9j 0 @FKIJ.
a; |FK; HFK; 11 i
. oK. =f
_____ 1. B
iteration j
(@) (€ @ (©) ©)
Figure 2. Iteration and mappings of the key generation
algorithm

The iterative key generation algorithm consists of the fol-
lowing steps (1)-(5):

1. For ¢t =1,...,n, a member ¢ generates a
cryptographically-secure random number F K ;.

2. For i = 1,...,n, a member i generates a quantity
HFK;; = a;; © FK; j, and all the members securely
exchange the HFKs as
Vi<Ilm<n,l#m,

[— m: {{TZ,G,j, HFKl,j}Kfl}Km-

3. Once the exchange is complete, each member com-
putes the new group parameter 6, as
0j+1 = /\03' © HFKLJ‘ ©] HFKQJ ©@---0© HFKn’j.
= 0j+1 = FKl,j © FK27]' © - FKnJ'. ()\ is a scale
factor.)

4. If the resulting group parameter 6, is cryptographically- 3

insecure for a particular application, all members can
repeat steps (1) - (3) creating a new high quality group
parameter 6;,1.

5. Fori=1,...,n, amember ¢ computes a; j+1 = 6;41®
FK; ;,and SK; = f(6,+1) where f(-) is a strong one-
way function.

The steps (1) - (5) present the computational steps for gen-
erating the keys at each update. At the end of step (5), we
have the SK for the current iteration. Note that the quan-
tity a; j4+1 is computed such that, for an outsider, obtaining
o j+1 is very hard, even if the actual key SK; is compro-
mised at any key update time interval (j,j + 1). Knowing
the group key does not reveal the group parameter and,
hence, the tight binding of the members will not be bro-
ken by the loss of the shared key. We note the following
additional features of the key scheme:

e Although all the members have each HF K; j, obtain-
ing the FK;; or ;41 of another member involves
search in the L-dimensional space, and obtaining their
correct combination involves search in the (n — 1)L-
dimensional space. Hence, even if a fellow member
becomes an attacker, that rogue member faces nearly
the same computational burden in obtaining the set
of n FKs as an outside crypto analyst; i.e. trust is not
unconditional.

e For such an outside attacker, breaking the system re-
quires either a search in a L-dimensional space to get
0, or in an nL-dimensional space to break individual
secrets of all the members. Access to all n HFKs is
alone is insufficient to permit an attacker to deter-
mine the SK; for that, the attacker must also possess
the current binding parameter € which is time-varying
and never transmitted. If a SK is known to be com-
promised (perhaps due to traffic analysis), due to the
strong one-way function property of f(-), information
regarding @ is not directly obtained.

RETRIEVAL OF THE FRACTIONAL KEY AND
PAD OF A FAILED NODE

The following steps are involved in recovery of the F'Kj ;
and az, ; of the node failed 7, where j represents the iteration
number in which the node was compromised or failed.

1. Any one FK-generating member—called the Recov-
ery Initiator (RI)—must initiate recovery and give the
HFK of the failed node 7 to the newly-elected node i
as RI — i : {{TR[, R,j, HFKZ:j}KE} }Ki‘

2. The RI must also give the newly-elected node i the
current SK as RI — i : {{Trr, R, j, SKj}KEIl}Ki.

Using the same algorithm as is used for distributed
initialization, with the following replacements: (a) 6
by & and (b) aq; by B;,;. Except for the changes in
the notation and the number of members participat-
ing, the algorithm for pad generation is same as for
distributed initialization. Hence, at the end of this
distributed pad generation, each member [has 3; ; as
its pad for key recovery process, and all these pads
are bound with the parameter &.

4. For [= 1,...,n — 1, each node | then computes a
modified hidden fractional key I/-I/ﬁ(u =0,;0FK;
and hands it E_\the newly-elected member i as | —
i ({1}, R, j, HFKI,j}Kl_l}Ki'

5. Node i then combines all of the modified HFKs and
recovers the fractional key F'Kj; ; using the operation

FK; ;=M @HFK,;® - @ HFK,,_1; ®0;41.

6. Node ¢ then extracts the pad a; ; using the operation
3, = HFKL]' ©] FK;J'.

We note that the recovered values of FK;; and az; are
unique. Once the new node recovers the fractional key of
the compromised node, it can inform the other contribut-
ing members to update the iteration number j to 7 + 1,
and then all members can execute the key generation algo-
rithm. Note that even though the newly-elected member
recovers the compromised fractional key and pad, the next
key generation operation of the new node does not use the
compromised key or pad. Hence, even if the attacker pos-
sesses the fractional key or pad at iteration j, it does not
allow the attacker to obtain the future fractional keys or
pads without any computation.

A SPECIFIC CHOICE OF THE FUNCTION ©

We have presented a class of multiparty key generation al-
gorithms where a given instance of the class is determined
by choice of function ®.

We note that one possible choice for ® is the modulo ad-
dtion operation with respect to a large odd prime p, denoted
here with &. In this case, we can deduce the following com-
putation from the key generation algorithm:

HFK,; HFK;; © --- ® HFK, ; =
FKLJ‘ S FK2,J‘ ®---D FKn’j S (Tl—l)aj.

To remove the effect of 8; on 841, we should ensure that
A= (p+1-n)so that

(p+1—n)0j D HFKL]' (&) HFKQJ’ D -
- @® HFK, ;
= FKi; ® FKyj @ -

TSI
® FK, .

Regarding the choice of the number of members, clearly,
the choice of n = 2 is not appropriate for such a scheme.
Although choosing n = 3 does not instantly expose a secret
pad a; when a participating member becomes an attacker
(i.e. a rogue), the following attack—called fractional attack
(FA)—is feasible.

Lemma: When ©® is an & function, independent of how non-
trivial the bit-length of the key is, choosing n = 3 permits
a FA.

Proof: Assume that the time instant at which one member
i (i =1 or 2 or 3) becomes a rogue is j. At this time the
members have values of oy j = HF K> ; @ HF K3 5, o j =
HFK;3 j®HFK, j,a3; = HFK, ;0 HFK, ;. Every mem-
ber also has access to the current 6;; and their own F K ;
(I =1, 2, 3). At this stage, obtaining the a component

of any other member is as computationally intensive as an
outside attacker trying to obtain 6;;. However, if a mem-
ber, say ¢ = 1, is compromised and releases its secret oy j,
then each of the other members can use this and compute
FKL]' =1, @9]'. Since the 0j+1 = FKL]' @FKQJ'@FKE}’]',
each member can now compute the other non-rogue mem-
ber’s FK as well.

This leads to the following Corollary: When ©® is an @
function, independent of how non-trivial the bit-length of
the key, the minimum number of members to prevent a FA

by a single rogue member for the multiparty key scheme is
4.

VERIFIABLE SECRET SHARING FOR KEY
GENERATION SCHEME

Since there are multiple entities involved in key generation,
it becomes important to have a mechanism to verify if the
parameters exchanged actually contribute to the generated
shared key. The verification steps have to be followed at
(1) SM-based group initialization, (b) Distributed Group
initialization, (c) f-generation iteration and (d) key recov-
ery.

SM-based Initialization

In the case of the SM-based scheme, each member i needs
to make sure that the SM uses non-trivial values for its o ;
and 0. Since each member needs to protect its individual
pad value, one method for openly checking correctness of
the pads is to generate a public value that will enable all the
key generating members to check their correctness without
revealing the actual value of the individual pads. Such a
verification technique falls under the category of Verifiable
Secret Sharing (VSS) [7, 8].

If one wants to check if the individual initial pads a; 1 given
by the security manager are “good”, the scheme given below
can be used.

1. Any one member (possibly the SM) picks a very large
prime number p and sends it to all the members. The
number picked should larger than the possible range of
the 6 value. The same member also sends a generator
g of the multiplicative group under p.

2. Each member 7 picks a random polynomial f; with
value 0 at the origin.

3. Each member ¢ adds the polynomial value to the pad
value, generates a;, = g1+l and sends the result
to all the other members.

=n ~

4. Each member ¢ computes g§1 = H§:1 01 = 901+Zj§¥ fi
and evaluates it at origin to check if the value is equal
to gf.

o1

5. Each member ¢ checks if g1 L Il where fail-

J"_L:lg"j,l ’
ure (inequality) means that some or all of the given

pads don’t correspond to the given 6.

We note that it is also possible to use specific polynomial
based techniques to allow members to verify if the individ-
ual pads are correctly distributed to the members.

Distributed Initialization

In the case of distributed initialization, the following scheme
can be used to check if the GI gives the 6 that is generated
from the contributions of the group members.

1. Any one member (possibly the GI) picks a very large
prime number p and sends it to all the members.
The number picked should be larger than the possible
range of the 8 value. The same member also sends a
generator g of the multiplicative group under p.

2. The GI computes g7 and ¢g"*-', and makes it available
to all the group members.

3. Each member ¢ publishes g¥! making it available only
to the group members.

4. Each member i checks if g/ L [T, 9", where fail-
ure (inequality) means that the pad binding parame-
ter and the individual pads do not agree. In this case,
since every member publishes its g¥i1, it is possible
to find exactly which member’s pad does not agree
without knowing the actual value of the pad.

We note that similar testing can be done for the 6 generation
stage. We omit that due to space limitation.

CONCLUSIONS AND FUTURE WORK

We presented a distributed key generation scheme that al-
lows a pre-specified number of members to jointly generate
and update a shared key. We showed that it is possible to
make use of the distributed nature of the group—through
the use of non-cryptographic techniques—to securely gen-
erate and distribute (in the sense of computational secu-
rity) the future keys. This is achieved by parameterizing
the distributed group with a time-varying quantity that is
computed at each key update. The parameter binds the
members’ dynamic one-time pads such that, without knowl-
edge of this parameter, it is not possible to generate a valid
one-time pad and, hence, a valid fractional key. In other
words, the members’ fractional keys are mized or hidden
with these time-varying pads that implicitly depend on the
time-varying group parameter. Hence, even if the hidden
fractional keys are obtained by an attacker, in the absence

of the time-varying group parameter, the attacker does not
have immediate access to the group key. Thus, this ap-
proach increases group security in a non-cryptographical
manner.

We also showed how the group can be initialized with or
without an external entity, and still recover the fractional
keys of a failed node without an external entity. In develop-
ing our methods, we were able to provide some VSS features
to verify that the group parameter, and the member gener-
ated secrets, are indeed related.

More importantly, the group shared keys are generated us-
ing a strong one-way function and, hence, the loss of the
shared key at a particular time interval compromises nei-
ther the integrity of the future keys nor the integrity of the
past keys.

REFERENCES

[1] R. Canetti, B. Pinkas, “A taxonomy of multicast security
issues”, INTERNET-DRAFT, May 1998.

[2] H. Harney, C. Muckenhirn, “GKMP Architecture”, RFC
2093, July 1997.

[3] H. Harney, C. Muckenhirn, “GKMP Specification”, RFC
2094, July 1997.

[4] A. Ballardie, “Scalable Multicast Key Distribution”, RFC
1949, May 1996.

[5] R. Poovendran, S. Ahmed, S. Corson, J. Baras, “A Scal-
able Extension of Group Key Management Protocol”, Proc.
of 2nd Annual ATIRP Conference, 187 -191, Feb. 2-6, 1998,
Maryland.

[6] M. Bellare and S. Micali, “Non-Interactive Oblivious
Transfer and Applications”, Advances in Cryptology - Crypto
’89, Springer-Verlag, 547-557.

[7] P. Feldman, “A Practical Scheme for Non-Interactive
Verifiable Secret Sharing”, Proc. of IEEE Fund. Comp.
Sci., 427-437, 1987.

[8] T. P. Pedersen, “Non-Interactive and Information-Theoretic
Secure Verifiable Secret Sharing”, Advances in Cryptology -
CRYPTO, LNCS 576:129-140, 1991.

[9] G. J. Simmons, “An Introduction to Shared Secret and/or
Shared Control Schemes and Their Applications”, G. J.
Simmons, editor, Contemporary Cryptology: The Science
of Information Integrity, 441-497, IEEE Press, 1992.

[10] N. Koblitz, “Cryptography as a Teaching Tool”, Cryp-
tologia, October 1997, 317-326.

